

Methods for <u>solvins</u> a quadratic equation

Example: $x^2 - 18x - 40 = 0$

You have already learned two methods to solve this equation:

Method I: Factorising

$$x^{2} - 18x - 40 = 0$$

$$(x - 20)(x + 2) = 0$$

$$x = 20 \lor x = -2$$

BUT now there is also a THIRD method, called:

> How does it work? Simple! It's just following this recipe

Roadmap ABC formula Solving a quadratic equation

- 1. Make the right hand side zero
- 2. Put the terms in order
- 3. Write down the a, the b and the c
- 4. Calculate the Discriminant

$$D = b^2 - 4ac$$

5. Fill the ABC formula:

$$x = \frac{-b \pm \sqrt{D}}{2a}$$

- 6. Calculate
- Answer the question (rounded or exact?)

Method II: Completing the Square

$$x^{2} - 18x - 40 = 0$$

$$(x - 9)^{2} - 81 - 40 = 0$$

$$(x - 9)^{2} - 121 = 0$$

$$(x - 9)^{2} = 121$$

$$x - 9 = 11 \lor x - 9 = -11$$

$$x = 20 \lor x = -2$$

THE QUODIFOTIC, FORMUNDS

Method III: The Quadratic Formula

$$x^2 - 18x - 40 = 0$$

 $a = 1$ $b = -18$ $c = -40$

$$D = (-18)^2 - 4 \cdot 1 \cdot -40 = 484$$

$$x = \frac{--18 + \sqrt{484}}{2 \cdot 1} \lor x = \frac{--18 - \sqrt{484}}{2 \cdot 1}$$
$$x = \frac{18 + 22}{2} \lor x = \frac{18 - 22}{2}$$
$$x = \frac{40}{2} \lor x = \frac{-4}{2}$$

$$x = 20 \lor x = -2$$

varendonck college

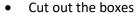
Proof the Quadratic Formula

Lesson goal

The Quadratic Formula provides us the solutions to an equation of the form $ax^2+bx+c=0$ by using $x=\frac{-b+\sqrt{D}}{2a}$ v $x=\frac{-b-\sqrt{D}}{2a}$.

Students are expected to memorize the Quadratic Formula. However, the reasoning behind its validity is not always clear to them. This assignment allows students to derive the Quadratic Formula themselves, providing proof of its validity

Teacher Instructions


- Distribute the worksheet to each student, but keep the instruction steps sheet separate.
- Let students cut out the boxes.
- Encourage students to arrange the steps in the correct order.
 - o If students are struggling, offer a small hint.
 - Alternatively, provide the instruction steps sheet to help them figure out the correct order.
- If students finish early, give them the instruction steps sheet to verify their work.
- Discuss the correct order with your students

Also available online:

Proving the quadratic formula (fisscher.net)

Each box shows a step in the proof of the quadratic formula.

- Arrange the steps in the correct order.
- <u>Check</u> if the steps are in the <u>correct</u> order.
- Correct? Glue them into your notebook

$$\left(x + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2}$$

$$x + \frac{b}{2a} = \sqrt{\frac{b^2 - 4ac}{4a^2}} \text{ v } x + \frac{b}{2a} = -\sqrt{\frac{b^2 - 4ac}{4a^2}}$$

$$\left(x + \frac{b}{2a}\right)^2 - \left(\frac{b}{2a}\right)^2 + \frac{c}{a} = 0$$

$$\left(x + \frac{b}{2a}\right)^2 = \left(\frac{b}{2a}\right)^2 - \frac{c}{a}$$

$$x + \frac{b}{2a} = \frac{\sqrt{b^2 - 4ac}}{2a} v x + \frac{b}{2a} = -\frac{\sqrt{b^2 - 4ac}}{2a}$$

START

$$ax^2 + bx + c = 0$$

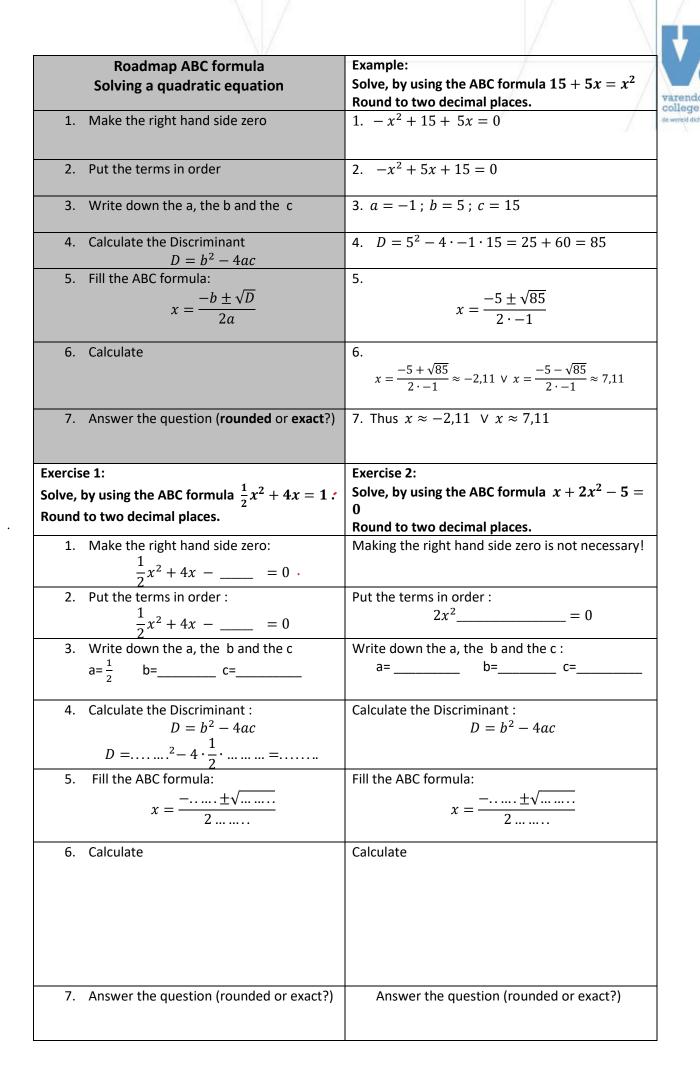
$$\left(x + \frac{b}{2a}\right)^2 = \frac{b^2}{4a^2} - \frac{4ac}{4a^2}$$

$$x = -\frac{b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a} \vee x = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{2a}$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} = 0$$

FINISH

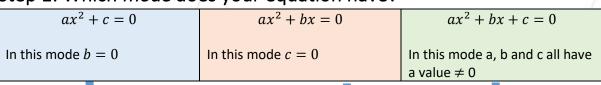
$$x = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \vee x = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$


INSTRUCTION STEPS to prove the quadratic formula	
1.Divide by a	
2.Completing the square	
3. Isolate x (part 1)	
4. Calculate the square at the right and make the denominators equal	
5. Add the fractions	
6. Calculate the square root	
7. Simplify the square root	
8. Isolate x (part 2)	
9. Add the fractions	

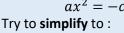
Answer Key

Prove the Quadratic formula

	STEPS
$ax^2 + bx + c = 0$	- 1.Divide by a
$x^{2} + \frac{b}{a}x + \frac{c}{a} = 0$ $(b)^{2} (b)^{2} c$	2.Completing the square
$\left(x + \frac{b}{2a}\right)^2 - \left(\frac{b}{2a}\right)^2 + \frac{c}{a} = 0$ $\left(b\right)^2 + \left(b\right)^2 + c$	3. Isolate x (part 1)
$\left(x + \frac{b}{2a}\right)^2 = \left(\frac{b}{2a}\right)^2 - \frac{c}{a}$	4. Calculate the square at the right and make the
$\left(x + \frac{b}{2a}\right)^2 = \frac{b^2}{4a^2} - \frac{4ac}{4a^2}$	denominators equal 5. Add the fractions
$\left(x + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2}$	
$x + \frac{b}{2a} = \sqrt{\frac{b^2 - 4ac}{4a^2}} \vee x + \frac{b}{2a} = -\sqrt{\frac{b^2 - 4ac}{4a^2}}$	6. Calculate the square root
$x + \frac{b}{2a} = \frac{\sqrt{b^2 - 4ac}}{2a} \vee x + \frac{b}{2a} = -\frac{\sqrt{b^2 - 4ac}}{2a}$	7. Simplify the square root
	8. Isolate x (part 2)
$x = -\frac{b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a} \forall x = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{2a}$	9. Add the fractions
$x = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \vee x = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$	



Roadmap ABC formula Solving a quadratic equation	Example: Solve, by using the ABC formula $15 + 5x = x^2$ Round to two decimal places.	
8. Make the right hand side zero	1. $-x^2 + 15 + 5x = 0$	
9. Put the terms in order	$2x^2 + 5x + 15 = 0$	
10. Write down the a, the b and the c	3. $a = -1$; $b = 5$; $c = 15$	
11. Calculate the Discriminant $D = b^2 - 4ac$	4. $D = 5^2 - 4 \cdot -1 \cdot 15 = 25 + 60 = 85$	
12. Fill the ABC formula: $x = \frac{-b \pm \sqrt{D}}{2a}$	$x = \frac{-5 \pm \sqrt{85}}{2 \cdot -1}$	
13. Calculate	6. $x = \frac{-5 + \sqrt{85}}{2 \cdot -1} \approx -2,11 \forall x = \frac{-5 - \sqrt{85}}{2 \cdot -1} \approx 7,11$	
14. Answer the question (rounded or exact ?)	7. Thus $x \approx -2.11$ V $x \approx 7.11$	
Exercise 1:	Exercise 2:	
Solve, by using the ABC formula $\frac{1}{2}x^2 + 4x = 1$:	Solve, by using the ABC formula $x + 2x^2 - 5 = 0$	
Round to two decimal places.	Round to two decimal places.	
8. Make the right hand side zero:	Making the right hand side zero is not necessary!	
$\frac{1}{2}x^2 + 4x - \underline{\hspace{1cm}} = 0$	&.	
9. Put the terms in order: $\frac{1}{2}x^2 + 4x - \underline{\hspace{1cm}} = 0$	Put the terms in order: $2x^2 + x - 5 = 0$	
10. Write down the a, the b and the c $a = \frac{1}{2} \qquad b = 4 \qquad c = -1$	Write down the a, the b and the c: a= b= c=5	
11. Calculate the Discriminant : $D = h^2 - 4ac$	Calculate the Discriminant : $D = b^2 - 4ac$	
$D = .4 \cdot^2 - 4 \cdot \frac{1}{2} \cdot \cdot = \cdot$	D=12-4-2-5=41	
12. Fill the ABC formula: $x = \frac{\cancel{4}.\cancel{5}.\cancel{5}.\cancel{5}.\cancel{5}}{2^{\cancel{5}}.\cancel{5}}.$	Fill the ABC formula: $x = \frac{- \cdot \cancel{1} \cdot \dots \pm \sqrt{\cancel{1} \cdot \cancel{1} \cdot \dots}}{2 \cdot \cancel{1} \cdot \cancel{2} \cdot \dots}$	
13. Calculate $X = \frac{-4 + \sqrt{18}}{1} \sqrt{X} = \frac{-4 - \sqrt{18}}{1}$		
exact	X=-4+ 2441 VX=-4- 2441	
14. Answer the question (rounded or exact?)	Answer the question (rounded or exact?)	
x20,24 V x ≈ 8.24	X ~ 1.35 V X ~ - 1.85	


Solving Quadratic Equations: how to choose?

Step 1: Which mode does your equation have?

Step 2:

$$x^2 = -\frac{c}{a}$$

Solve by taking the **square root**:

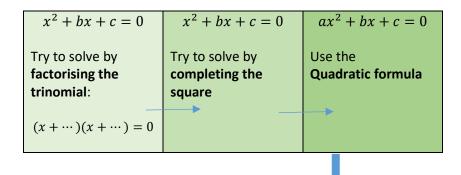
$$x = \sqrt{-\frac{c}{a}} \vee x = -\sqrt{-\frac{c}{a}}$$

$ax^2 + bx = 0$

Solve by factorising the binomial:

$$ax(x + \frac{b}{a}) = 0$$

$$ax = 0 \ \lor x + \frac{b}{a} = 0$$


$$x = 0 \ \lor x = -\frac{b}{a}$$

$ax^2 + bx + c = 0$

Try to **simplify** to : $x^2 + bx + c = 0$

Go to step 3...

Step 3 (only for $ax^2 + bx + c = 0$)

Step 4

Reread the exercise and answer the question asked.

Points of attention:

- Rounding
- In the case of a context exercise:
 - o Full English sentence?
 - o Unit